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Abstract: Modelling and simulation of human biology is one of the most recent and interesting

techniques. Infectious and cell diseases are very serious major public health problems. These diseases

are still an open fields of study. Some of these diseases are never understood yet others need more

and more effort to be modelled and solved completely. The hepatitis B virus (HBV) is considered to

be among the most dangerous infectious diseases in the world (Martcheva, 2003) and (El-Zayadi et

al., 2001). Constructing mathematical and simulation models for HBV , is the main aim of this paper.

Understanding, possibly control and predicting the nature of the dynamics of these diseases are also

important tasks of our study. It has been shown that, there is a threshold level of the basic

reproduction rate R0 which depends on the disease parameters, under which the disease dies out from

the population and above this value the disease fires up. This parameter value is used in both

stochastic and Mont Carlo simulations. In this paper we study first, a stochastic model for the spread

of the HBV. We use the method of the stochastic partial differential equations given in (Kapur, 1992;

Jacoby, 1981) and (Report No. 193), to drive our stochastic model and then try to solve this model.

Finally Monte Carlo simulations have been conduct for this disease using a random infection rate.
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INTRODUCTION

A few number of qualitative studies of hepatitis have been carried out, most of them studied hepatitis C

(Kapur, 1988; Das et al., 2005) studied a similar stochastic model for the spread of hepatitis C. Moneim et

al., (Murthy et al., 1990)  studied hepatitis C with different types of virus genome. One of the few works

studying HBV was due to Moneim (Moneim, 2006)  he studied a deterministic model for the spread of HBV

in Egypt. Threshold levels were derived from this model to prevent epidemics from the population. It has been

found that the disease is stable under certain conditions to control the spread of the disease. However around

300 million persons world wide suffer from chronic (HBV) infection 25-30 % of whom eventually will die

from chronic sequel. The prevalence of HBV infection varies from country to country and depends upon a

complex mix of behavioral, environmental and host factors. However about 10 % go onto chronic hepatitis

B then after twenty years develop hepato-cellular carcinoma, this depend on the virus persistence. Blood, Blood

products and Shared syringes act as medical transmissions of HBV. Also the disease can transmitted through

the use of shared razors and teeth brushes. There another way for the transmission of HBV infection, the blood

sucking insects as mosquitoes and bed-bugs. HBV can transmitted by Sexual intercourse but in a rare manner

this is been reported as a result of the obtained increase of the cases among sexual partners of infected

individuals. HBV can be transmitted vertically from mother to heir newborns Moneim, (2006). The incubation

period of HBV varies from six weeks to six months. Here in this paper we study a stochastic model for the

spread of the Hepatitis B Virus. We use the method of the stochastic partial differential equations which

described in Isham Jacoby, (1981) and Kapur (Report No. 193) to drive our stochastic model and try to solve

this model numerically. Mont Carlo Simulation is been used to study a more realistic model than considering

the assumption that the population can not be mixed in a homogenous manner. Thus this assumption is

replaced by the one that each person has its own chance to catch the disease from another infected person.
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That is, the infection rate is taken as a random value of specific uniform distribution. The mean value of this

uniform distribution is equal to the suggested value which is used in both the deterministic and stochastic

version of this model in section two.

The Model:

The epidemiological features of the HBV lead to the following assumption about the trans-mission of the

disease:

1. The population has a constant size, N and divided into four groups: Susceptible, latent, infective and

recovered. The birth and death occur at a constant and equal rate b.

2. All newborns are susceptible.

3. The population moves from latent class to join the infected one at a constant rate ó.

4. The population is mixing in a homogenous manner i.e. every person has the same chance to becoming

in contact with an infected person.

5. The transmission of the HBV infection occurs at a constant rate â, proportional to the number of contacts

between the susceptible and infective individuals.

6. Recovery occurs at a constant rate á proportional to the number of infective individuals. Recovery

conferees permanent immunity.

Let, S, L, I and R represent the number of susceptible, latent, infective and recovered individuals

respectively. As ó is the rate in which the persons move from the latent to the infective group the latent period

is 1/ó, and the recovery period is 1/ó Bailey, (1975).

These assumptions lead to the following deterministic model which describing the spread of the infectious

hepatitis B virus Moneim, (2006).

  (1)

  (2)

  (3)

  (4)

with S + L + I + R = N. The basic reproductive number of this model which is the average value of the

expected number of secondary cases produced by a single infected person entering the population at the disease

free equilibrium is:

  (5)

0This model has been solved and analyzed in Moneim, (2006). It has been shown that when R  < 1 in

0value the disease dies out and the disease free equilibrium point (N,0,0) is stable. But if R  > 1there is another

endemic equilibrium point which is stable in this case and the disease takes off.

nmhk Now, we focus on the stochastic version of this pervious model. Let P (t) be the probability that there

are n susceptible persons, m latent persons, h infective persons by HBV and k recovered persons respectively

ijuqin our system, and let f Ät + o(Ät) gives the probability that the numbers (n, m, h, k) change to (n+I, m+j,

h+u, k+q) in the time interval (t, t+Ät). So moving a person from a class to another or adding a person to any

class by birth or removing a one by death, changing the system state from {n, m, h, k} to another and this

depends on the disease parameters as follows:
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and

The general form of the stochastic partial differential equation describing our model is given as

follows (Murthy et al., 1990) and (Herbert and Isham, 1998):

  (6)

where ö(t; x; y; z, w) is a probability generating function which defined as,

  (7)

Equation (6) is the four dimensions version of the stochastic partial differential equation given in (Kapur,

1992)and (Isham, 1995). Then,  the  basic stochastic partial differential equation for the generating function

ö(t; x, y, z, w) becomes,

  (8)

Hence

  (9)

Equation (9) represents our basic stochastic partial differential equation of the spread of the Hepatitis B

Virus. Equation (9) is transformed into a system of ordinary differential equations for the 4 means, variances

and co-variances of the original variables n, m, h and k by differentiating equation (9) with respect to x, y,

z and w respectively, and setting these variables to the value of one Then we obtain, the differential equations

n m h kgoverning the means ì , ì , ì  and ì , of the original variables n, m, h and k respectively as follows:

 (10)

 (11)

 (12)
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 (13)

nhWhere ó  is the co-variance of the variables m, h.

Similarly  the  following  differential  equations give the variances                      and co-variances

                            and        of the variables n; m; h and k respectively:

 (14)

 (15)

 (16)

 (17)

 (18)

 (19)

 (20)

 (21)

 (22)

 (23)

Some of the above equations involve third moments of our variables, alternatively we use an
approximation to the third moments in terms of the mean, variances and co-variances by assuming our
variables obey a specific distribution. Here we use a multivariate Normal distribution where, the third center

1 2 3moments of this distribution are zero, so tri-variate Normal variables W , W  and W  satisfy the following

i ij i jequation (using the notation mi = E(W ), m  = E(W  W )).
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 (24)

Now, the differential equations for variances and co-variances of our n, m, h and k becomes as follows,

 (25)

 (26)

 (27)

 (28)

 (29)

 (30)

 (31)

 (32)

 (33)

 (34)

Then, we can easily solve the system of differential equations (10) - (13) and (25) - (34) numerically.

Numerical Simulation:
The system of coupled non-linear ordinary differential equations (10) - (13) along with (25) - (34) describe

the means, variances and co-variances of the S, E, I and R, is been solved numerically with the help of the
software Mathematica 5.1 and using estimated parameter values as follows: b = 002= 001= 002), which used
by Moneim (Moneim, 2006) and (El-Zayadi et al., 2001). Using different parameter values of the reproduction

0 0 0number R so that R  can be less than one in value and for another parameter set that makes R  > 1 we obtain

0different types of numerical solution of the stochastic model of the hepatitis B virus. If R  < 1 the solution
goes to an asymptotic value which is the disease free solution, as the mean value of E, I and R figure 1(b),
(c) and (d) tend to zero as the time becomes large, while the mean value of the susceptible population S tends

0to the total population number N figure 1(a). In this case R  < 1, when t becomes very large,the model
becomes a stochastic model of population growth of pure birth and death process. These results confirm the
stability of the equilibrium point (N, 0, 0, 0) from the analytical study.

0In the other hand if we take parameter values large enough so that R  > 1, The disease raises up and
becomes endemic. Figures 2(a) show that, the Mean of susceptiblesn decreases to approach its equilibrium
value (S) as t becomes very large. this means that the equilibrium value of mean of susceptibles independent
on increasing of the total population size. While Figures 2(b), (c) and (e) represent the means of latents m,
infectivesh and recovers k respectively and show that all solutions are increasing to approach an asymptotic

0endemic level for each compartment. These endemic levels are stable when R  > 1. These simulation results

0agree with the analytical asymptotic stability results of the endemic equilibrium point (SL I R) when R  > 1
for the deterministic model from the analytical study.
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(a)    (b)

(c)    (d)

0Fig. 1: Mean of (a) Susceptibles, (b) Latents, (c) Infectives and (d)Recovers against time for HBV at R  < 1.

(a)        (b)
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(c)         (d)

Fig. 2: Mean  of  (a)  Susceptibles,  (b)  Latents, (c) Infectives and (d)Recovers against time for HBV at

0R  > 1.

Monte-Carlo Simulation:

In the previous sections of this paper, the stochastic version of HBV model is been studied and its

numerical simulation is conducted. The deterministic model shows that there is a thresh-old value for R0 above

it the disease becomes endemic otherwise the disease dies out from the population. Stochastic results of the

previous section shows a similar results for the deterministic model. Now we use the same parameter set which

are used in both deterministic and stochastic models to conduct Mont Carlo simulation of our model. The

parameters are as follows b = 0.02, â = 0.017, ó = 0.01, á = 0.02. Here we use a more realistic assumption

that the infection rate is a random variable. So, in this section the Monte-Carlo technique is used to simulate
our model. The results obtained here by this method are compared with those of the deterministic and

stochastic models.

The main point here is that, the assumption which says, the population is mixing in a homogenous manner,

is replaced by the more realistic one which is each person has it is own chance to becoming in contact with

an infected person and then to catch the disease from another infected person by a non-homogenous manner.

Therefore, the parameter â is been taken as a random value of specific uniform distribution with a mean value

equal the suggested value â =0.017 which is used in the previous sections. Then the deterministic model

becomes

 (35)

 (36)

 (37)

 (38)

with S+L+I+R=N

Where â  is a random number generated by specific uniform distribution with mean value ( E(â ) = 0017).* *

We use the fourth order Rung-Kutta method, for solving systems of ordinary differential equations. The fourth

order Rung-Kutta method produces accurate approximation (Isham, 1995)  and (Murthy et al., 1990). The

present system (35) - (38) is solved by using this method with time step h = 10 and evaluate the mathematical

mean of S(t), L(t), I(t) and R(t) of 1000 samples at each step to produce numerical solutions for means of S(t),

L(t), I(t) and R(t) at any time. The results are shown in Figure (3).
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(a)

    (b)

Fig. 3: Mont Carlo simulation results for our HBV model (37)-(40) and plot the Susceptibles, Latents,

0 0Infectives and Recovers against time when (a) R  < 1 and (b) R  > 1

Conclusions:

In this paper we studied HBV models with susceptible, latent, infected and recovered populations. The

stochastic model has been analyzed and solved numerically. We observed that the mean values of the four
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0compartment S, L, I and R tends to disease free state asymptotically when parameter values, which make R

< 1, are used. Otherwise the means go to endemic levels and the disease fires up in the population. Monte

carlo simulations for a random infection parameter have been conducted. Moreover, the Monte Carlo

simulations show similar results to those of the stochastic results, but with a little deference. In the Monte

Carlo simulations there is a fluctuations around the asymptotic levels in both cases the disease free state when

0 0R  < 1 and the endemic level when R  > 1.

We may conclude that, the HBV disease free state is always possible and stable in all of our models, the

deterministic, the stochastic and the Monte Carlo models. Control of blood to blood contamination and health

eduction (drug users, surgeries, Dentists etc., ) is the only need to keep R0 below the threshold level and then

to prevent the population from HBV epidemics.
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